Composition Series in Groups and the Structure of Slim Semimodular Lattices

نویسنده

  • GÁBOR CZÉDLI
چکیده

Let ~ H and ~ K be finite composition series of a group G. The intersections Hi ∩ Kj of their members form a lattice CSL( ~ H, ~ K) under set inclusion. Improving the Jordan-Hölder theorem, G. Grätzer, J.B. Nation and the present authors have recently shown that ~ H and ~ K determine a unique permutation π such that, for all i, the i-th factor of ~ H is “down-and-up projective” to the π(i)-th factor of ~ K. Equivalent definitions of π were earlier given by R.P. Stanley and H. Abels. We prove that π determines the lattice CSL( ~ H, ~ K). More generally, we describe slim semimodular lattices, up to isomorphism, by permutations, up to an equivalence relation called “sectionally inverted or equal”. As a consequence, we prove that the abstract class of all CSL( ~ H, ~ K) coincides with the class of duals of all slim semimodular lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slim Semimodular Lattices. I. A Visual Approach

A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim lattices are planar. Slim semimodular lattices play the main role in [3], where lattice theory is applied to a purely group theoretical problem. After exploring some easy properties of slim lattices and slim semimodular lattices, we give two visual structure theorems for slim semimodular lattices.

متن کامل

How many ways can two composition series intersect?

Let ~ H and ~ K be finite composition series of length h in a group G. The intersections of their members form a lattice CSL( ~ H, ~ K) under set inclusion. Our main result determines the number N(h) of (isomorphism classes) of these lattices recursively. We also show that this number is asymptotically h!/2. If the members of ~ H and ~ K are considered constants, then there are exactly h! such ...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

Notes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices

A recent result of G. Czédli and E. T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding “forks”. We give a construction that accomplishes the same by deleting elements, by “resections”.

متن کامل

The Matrix of a Slim Semimodular Lattice

A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim semimodular lattices play the main role in G. Czédli and E.T. Schmidt [5], where lattice theory is applied to a purely group theoretical problem. Here we develop a unique matrix representation for these lattices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011